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the peak centered on SIR values usually represents 
only a small fraction of the total number of invariants 
(typically < 10%), and they can be readily identified. 
We found that in these cases simply rejecting all 
estimates near the corresponding SIR invariants 
(within 5 °) results in error distributions similar to 
those found in the general case. Thus it should still 
be possible to obtain unbiased protein phases from 
the remaining invariant estimates. It is useful to do 
this for all space groups even when the heavy-atom- 
invariant correction is included, except when the trip- 
let consists of all centric reflections. 

unbiased with randomly distributed errors, should be 
better suited for use in phase-determining procedures. 

Finally, it must be noted that although the pro- 
cedures outlined can be used to reduce both the 
absolute errors and bias towards SIR inherent in the 
estimates, they do not resolve the twofold ambiguity 
in that there are still two equally probable estimates 
for each invariant. Work is under way in our labora- 
tory and elsewhere (Hao Quan & Fan Hai-Fu, 1988; 
Klop, Krabbendam & Kroon, 1987; Langs, 1986; Fan 
Hai-Fu, Han Fu-son, Qian Jin-zi & Yao Jia-xing, 
1984) to resolve this difficulty by various procedures. 

Summary 
The procedure for estimating three-phase structure 
invariants from single isomorphous replacement data 
(Hauptman, 1982) as modified by Fortier, Moore & 
Fraser (1985) has been extensively tested on over 260 
million invariants computed from 17 protein struc- 
tures and 34 heavy-atom derivatives. It was found 
that the procedure can provide reasonably accurate 
values for any protein and derivative combination. 
Although the modification of Fortier greatly reduces 
systematic bias towards 'unresolved SIR values', a 
residual bias still remains. This residual bias can be 
further reduced, or eliminated, by one of several 
procedures described in this manuscript. If a correc- 
tion term is added to account for the heavy-atom 
invariant, the accuracy is often improved as well. 
When applied to systems with heavy atoms in a cen- 
trosymmetric arrangement, the distribution of errors 
in the estimates is frequently bimodal, with the major 
peak centered on the true protein invariants and the 
minor peak on their SIR counterparts. The estimates 
near SIR values are readily identified and can be 
removed, leaving an acceptable distribution of errors 
in the remaining estimates. The new estimates, being 
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Abstract 

The effects of X-ray reflection phases on the surface- 
reflected intensity, the dispersion surface and the 
excitation of modes of wave propagation of three- 

beam grazing-incidence X-ray diffraction are investi- 
gated via numerical calculations, based on the 
dynamical theory. Possible ways of determining the 
triplet phases involved are demonstrated. The Aufhel- 
lung and Umweganregung interactions and the 
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geometric effects due to crystal rotation are also 
discussed. 

1. Introduction 

The phase of an X-ray reflection is one of the main 
concerns in X-ray diffraction/scattering experiments. 
For single-crystal diffractions, it is well known that 
the phase can affect considerably the diffraction 
intensity of a multi-beam diffraction (e.g. Kambe & 
Miyake, 1954; Hart & Lang, 1961; Colella, 1974; Post, 
1977; Chapman, Yoder & Colella, 1981; H~ier & 
Aanestad, 1981; Chang, 1982; Juretschke, 1982; 
Hiimmer & Billy, 1986; Shen & Colella, 1988; Mo, 
Haubach & Thorkildsen, 1988; Chang & Tang, 1988; 
Hiimmer, Weckert & Bondza, 1989). In the case of 
grazing-incidence X-ray diffraction, abbreviated as 
GIXD (Marra, Eisenberger & Cho, 1979; Vineyard, 
1982; Afanas'ev & Melkonyan, 1983; Cowan, 1985; 
Hoche, Briimmer & Nieber, 1986; Sakata & Hash- 
izume, 1988; Fuoss, Liang & Eisenberger, 1989; Dur- 
bin & Gog, 1989; Hung & Chang, 1989), X-ray reflec- 
tion phases should, in principle, also be involved in 
multi-beam diffraction processes. However, reports 
on this particular phase problem have not been found 
in the literature. It is therefore the aim of this paper 
to investigate theoretically the effects of phases on 
the dynamical scattering of three-beam GIXD. 
Numerical calculations, based on the dynamical 
theory of GIXD (Afanas'ev & Melkonyan, 1983), are 
carded out for the coordinates of the wavepoint on 
the dispersion surface, the excitation of the mode of 
wave propagation and the reflected intensities. They, 
are all related to the triplet phases involved. From 
these calculations, a possible way of determining the 
phases is suggested. Aufhellung and Umweganregung 
effects (Renninger, 1937), which are usually encoun- 
tered in three-beam diffractions from a crystal bulk, 
are also predicted for the specularly reflected 
intensities at the three-beam interaction positions. 

2. Geometry of three-beam GIXD 

Grazing-incidence X-ray diffraction takes place when 
an incident X-ray, with a glancing angle of incidence 

about several arc min, is diffracted by a Bragg plane, 
say H. Two surface-reflected beams as well as two 
Bragg diffracted beams are generated. For simplicity, 
if the reciprocal-lattice vector h of the H reflection 
lies in the plane of the crystal surface, the azimuthal 
rotation 0 around h will bring additional sets of 
planes, whose reciprocal-lattice vectors also lie in the 
crystal surface, to satisfy simultaneously Bragg's law. 
Thus, multi-beam GIXD occurs. Figs. l (a)  and (b) 
show schematically two possible three-beam GIXD 
situations. In Fig. l (a) ,  the three reciprocal-lattice 
points, O, H and G, lie in the plane of the crystal 
surface OHG. OH (=h)  and OG (=g) are the 

reciprocal-lattice vectors of the H and G reflection 
involved. C is the centre of the triangle OHG. The 
point M is at the middle of OH. The half circle is 
the locus of the Laue point (entrance point) of the 
two-beam H reflection, rotating around OH. E is an 
entrance point on the semicircle such that EO = E H  = 
k = l/A, A being the X-ray wavelength. /_EOP and 
/_EMP are the incident angle ~ and the azimuthal 
angle 0, respectively. 

The three-beam (O, H, G) GIXD takes place at E3. 
E30 , EaH and E3G are the corresponding wavevectors 
k0, kh and k~ outside the crystal. EP and E3C are 
perpendicular to the crystal surface OHG. E'3 is the 
tie point, with respect to E3, on  the dispersion surface. 
The angles/_E30C and/_EaMC , denoted as ~t) 3 and 
~b3, are the incident angle and the azimuthal angle at 
the exact three-beam diffraction position, respec- 
tively. The corresponding reflection angle of the G 
reflection is ~g. According to Hung & Chang (1989), 
if E3 coincides with C, i.e. ~3=0 and ~3=0, the 
intensity of the surface-reflected beam is null. Only 
those three-beam GIXD's with ~t) 3 ~;~ 0 and I//3 ~;~ 0 ,  

which have appreciable intensities, are physically 
meaningful. In the following discussion, we shall 
concentrate on this type of GIXD. 

In Fig. l (a) ,  the centre C is inside the triangle 
OHG. If the ~ rotation is performed from E1 to E3, 
the three-beam GIXD at E3 is in the 'ouT' situation 
because point G is moving away from E 3. In Fig. 
l(b), point C is outside OHG. The three-beam case 
at E is in the 'IN' situation because point G is moving 
towards E3 during the ~ rotation. It will become clear 
that the discrimination of the IN-OUT situation plays 
an important role in GIXD phase determination. 
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Fig. 1. Geometry of three-beam GIXD: (a) 'OUT' and (b) "IN" 
situations. 
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As has been pointed out (Hung & Chang, 1989), 
the Bragg condition for a symmetric (h = g  = Ig-hl)  
three-beam GIXD can be written as 

h = 2dh sin Oh = 2dh sin (7r/3) cos ~P3 (1) 

with 

cos ~b3 = tan Oh~tan (7r/3) (2) 

where Oh is the Bragg angle of the H reflection, dh is 
the atomic spacing of the H reflection. For the angle 
of G reflection eg =0,  the corresponding incident 
angle ~ = ~a and the azimuth ~ = ~a are determined 
by (Hung & Chang, 1989) 

cos ~ba = 3 cos ~b3-1/cos Oh (3) 

sin ~Pa = cos Oh sin $a. (4) 

For a general three-beam GIXD, the diffraction con- 
dition takes the following form: 

h = 2dh sin/__OGH cos ~ 3  = 2dh sin Oh. (5) 

The corresponding $a for ~pg = 0 (i.e. where the wave- 
front of the G reflection cuts the crystal surface at 
point A) is the azimuthal angle at which EP is tangen- 
tial to the sphere, centred at G, of radius k. Since 4'3 
is a small angle, ~ba is defined approximately as 

cos ~ba -~ [cos ~P3 cos /_OGH 

--sin2 ~p3/(2 COS ~P3 cos t)]/cOS Oh (6) 

where t = / _ M C M '  and ~b3 is related to ~P3 as sin ~3 = 

cos Oh sin @3. The wavelength h used varies as the 
angle of incidence ~3 changes. For a given A, the 
incident angle ~ varies during the ~ scan. The 
intensities of the surface-reflected beams, denoted as 

$ 
P~, P~ and Pg, versus ~b are the diffraction profiles 
to be dealt with in this study. 

3. Theoret ical  considerations 

For a given three-beam (O, H, G) GIXD, the funda- 
mental equation of wavefields for both cr and zr 
polarizations can be expressed as 

o o o 

o 

/ i  ! 0 0 0uoq: 0 ... 

o/ o. q 
d3xg 0 d'3xg_ h 0 X o - 2 e , /  \ D = g /  

(7) 

where gg/4~r is the electric susceptibility of the G 
reflection. Xg = FFg, where F = - r e h / ' a ' V .  Fg is the 
structure factor, re the classic radius of the electron 
and V the volume of the crystal unit cell. The quantity 
2e is defined as 

2SL= ( K2L- k2)/ k 2 (8) 

for L = 0 ,  g and h. KL is the wavevector of the L 
reflection inside the crystal, k is the magnitude of the 
wavevector in vacuum. 

The D~'s and D~'s are the ~r- and zr-polarized 
wavefields. The p's and d's are the polarization fac- 
tors defined, according to Fig. 2, as 

A A A ^ ^ A 
O'o. o'1, Oro. trg o%. Crh p~ = d2 = d~ = 

p= = 40. "~h d 3  = "no. 4g d~ = 4 h .  4g (9) 
A m A A 

dl ="no. o'g d~ = ~h • O'g 

where all the cr unit vectors are chosen to be perpen- 
dicular to the crystal surface OGH. E'3 is the tie point 
on a branch of the dispersion surface. The difference 
E3E'3 is the accommodation kS. Ko (=E~O),  Kh 
(= E~H) and Kg (= E~G) are the wavevectors inside 

A s  the crystal. The o- s, -h's and K's satisfy the relation 

^ A 
grL = KL x ~L. (10) 

Owing to grazing incidence, ~/I 3 and ~ 3  are very small 
so that the k's are almost parallel to the crystal surface. 
Thus the ~r's are approximately perpendicular to the 
surface. In these circumstances, the polarization fac- 
tors become (see Fig. 2b) 

^ A ^ A 
( T  i . ~ j = O  • ~ i  ~ j  ~ 1 

~O . ~h ~" COS 20h ~O . ~g "-" COS 20g (11) 
A ^ 
~ g  • ~ h  --~ COS 20g-h 

where Og, Oh and Og-h are the Bragg angles of the (3, 
H, and G - H  reflections, respectively. With this 
small-angle approximation, (7) can be decomposed 

h~ 
E3 ~h ~bh 

G _/=:-2" c 

0 
(a) 

H 

~T~h ~h 

G _ 

G 
(b) 

Fig. 2. Definition of the polarization unit vectors: (a) side view; 
(b) top view. 
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into two matrix equations of the form 

(12) 
where 

Pg-h "" Ph = Pg = 1 

for cr polarization and 

Ph = COS 2Oh, pg = COS 2 0 g ,  Pg-h ---- COS 20g-h 

for 7r polarization. The parameters ~, u, ag and O~ h 

are defined as 

= koz /k  u = Koz /k  

ag = [(ko +g)2_  k2] /k  2 (13) 

ah = [ (ko + h ) 2 -  k2]/ k 2 

where Koz is the vector component of K0 normal to 
the crystal surface. 

Equation (12) can be solved as an eigenvalue prob- 
lem. The determinant of the 3 x 3 matrix in (12) equal 
to zero is the dispersion equation, which is the 
necessary condition for (12) having non-trivial sol- 
utions. Since the H planes always satisfy the Bragg 
condition, Cg h = 0. For simplicity, we only consider 
the or-polarized wavefields in the following dis- 
cussion. The dispersion equation can be expressed as 

W 3 _ ozgWE+pW 

"q-(OlgXgXg"l-XgXgXh-g"]-XhX~Xg_h)-~'O, (14) 

where 

W = X o  - / / 2 +  ~1/)2 (15) 

P = -XgX~ --XhXh--Xg-hXh-g. (16) 

The real part of the eigenvalue gives the coordinates 
of the tie point on the dispersion surface, which 
defines the mode of propagation. The imaginary part 
determines the absorption. The eigenvectors provide 
the ratios among the amplitudes of the wavefields 
involved. The absolute wavefield amplitudes can be 
determined via the boundary conditions 

3 
Eo+ E~= ~, Do(j)  (17a) 

j = l  

3 
E~h = ~, Dh( j )  (17b) 

j = l  

3 
E ~ =  ~, Dg( j )  (17c) 

j = l  
and 

3 
¢#(Eo-E~)= E u ( j )D o( j )  (18a) 

j = l  

3 

--~l)hESh = ~ u ( j ) D h ( j )  ( 1 8 b )  
j = l  

3 
$ 

- ~ g E g =  E u ( j ) D ~ ( j )  (18c) 
j = l  

for the continuities of the normal components of the 
electric displacements and the tangential components 
of the magnetic fields at the crystal boundary, respec- 
tively. Eo is the incident wavefield amplitude. E~, E~, 

$ and Eg are the amplitudes of the surface-reflected 
waves of the O, H and G reflections. 

The corresponding intensities of the surface- 
reflected beams are then equal to 

P~= E~/Eo 2 (19a) 

P~= ESh/EoE(~h/~) (19b) 

Pg= E~/  EoE(~g/~p). (19c) 

For a general three-beam GIXD, the eigenvalue 
equation (12) cannot be solved analytically. The 
eigenvalues, eigenvectors and the diffracted 
intensities can only be calculated numerically. 

4. Phase effects on the dispersion relation 

When the crystal is set at the exact three-beam GIXD 
diffraction position, ~ = ~3, 0 = 03 and % = ah = 0. 
With the small-imaginary-part approximation (p and 
q are real), the dispersion equation (14) can be written 
a s  

W 3 + p W + q  =0 (20) 

where 

W =  q~32 + Xo- u2 (21) 

P = -XgX~ - XhXa-- Xg-hXh-g (22) 

q = XhX~ Xg-h "]- Xh,)(gXh-g • (23) 

The roots W of (20) depend on the discriminant De 
defined as 

De= - ( 4 p 3  + 27q2). (24) 

If De < 0, there are one real and two complex conju- 
gate roots. If De = 0, there are two identical real roots. 
If De>0,  there are three unequal real roots. For 
simplicity, if anomalous dispersion is not considered, 
then 

X/~ ~--- Xh ~, Xg = Xg ~, ,)(g- h = X ~ - g  

where * denotes complex conjugate, p and q take the 
forms 

p =--Ix 12--1xhl=--IXg_hl = (25) 

q = -2]XhX~Xg_h[ COS t~ 3 ( 2 6 )  

where ~3 is the phase of the structure-factor triplet 
FhF~Fg_h. Since p and q are real, De > 0. This means 
that W has three unequal real roots. Assume that 
these roots are a,/3 and % 
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(i) c o s  ( ~ 3 > 0 ,  q < 0  
a/3y > 0 because the sign of q determines the sign 

of a/37. Since the coefficient of W 2 is null, the sum 
of a, /3 and Y is always zero: 

c e + / 3 + y = O .  (27) 

Hence a, fl and y should have one positive and two 
negative in order to fulfil (27) and afly > O. 

(ii) cos 83<0,  q > 0  
The conditions a + fl + 7 = 0 and afly < 0 hold. 

This implies that there are one negative and two 
positive real roots for W. 

5. Calculations and results 

Numerical calculations, following the theoretical 
consideration given in § 3, are carried out for (i) the 
strong three-beam (220)(202)/(022) diffraction of 
Ge at the 'ouT' position; (ii) the weak three-beam 
(222)(113)/(111) of Ge at the 'ouT' position; and (iii) 
the strong three-beam (220) (111)/(111) diffraction of 
Ge at the 'IN' position. The crystal surface planes are 
(111) for case (i) and (110) for (ii) and (iii). The 
atomic scattering factors, temperature factor and 
anomalous-scattering correction are taken from Inter- 
national Tables for X-ray Crystallography (1974). 
Table 1 lists the real part F '  and the imaginary part 
F" of the structure factors calculated for A = 1.60830, 
1.73224 and 1.88580/~. 

The purpose of choosing these cases for illustration 
is to reveal the effects of geometry and phases on the 
surface-diffracted intensity distributions, the disper- 
sion surface and the excitation of the mode of wave 
propagation. 

(i) Ge (000)(220)(202)/(022) OUT 
This strong three-beam diffraction occurs at I]/3 = 

22mrad (~03=11mrad) for A = 3 . 4 6 4 4 7 1 ~ .  The qJ 
scan is around the reciprocal-lattice vector of the 220 
reflection. For simplicity and for the purpose of 
illustration, we purposely choose the second har- 
monic, i.e. )t = 1.732235 ~ ,  for calculation. The triplet 
phase t~ 3 :- t~220 "3 t- (~205 + t~0~2 is 0 °. 

Figs. 3 ( a ) - (d )  show the surface-reflected 
intensities P~oo, P~2o and P~o2, the dispersion surface 
(the real part of u, Re [u], versus ~), the excitation 
Ex (i) of mode and the penetration depth t, respec- 
tively. The excitation, the penetration depth ti and 
the average penetration depth ? are defined as 

Ex ( i )=  • D*L(i)DL(i)/Eo 2 (28) 
L=O,g,h 

ti-- 1/{27rk Im [u(i)]} (29a) 

3 

T= ~ ti Ex (i), (29b) 
i = 1  

where Im stands for the imaginary part. As pointed 
out by Hung & Chang (1989), the secondary reflection 

Table 1. Calculated structure factors 

1.60830 .~ 1.73224/~ 1.88580 

h k I F' F" F'  F" F'  F" 
0 0 0 246-21 7.696 247.33 8-816 247-71 10"200 
1 1 I 146.82 5.371 147.60 6-153 148-56 7.118 
1 1 3 114.69 5.186 115.45 5-941 116.38 6.874 
2 2 0 175.39 7.431 176-47 8.513 177.81 9-849 
2 2 2 1.093 0.050 1.098 0"058 1"104 0.067 

202 has a peak value in P~o2 at the ~,a (= 25.6 mrad) 
position (Fig. 3a). P~oo and P~2o have their usual 
characteristics as in the two-beam GIXD, except for 
a small modulation near ~'3. 

Fig. 3 (b) is the intersection of the dispersion surface 
with the plane perpendicular to and bisecting the 
reciprocal-lattice vector of the 220 reflection. The 
dispersion curve of mode 1 follows the wavefront of 
the 202 reflected wave for ~ < ~3. At ~ = i//3, mode 
1 intercepts with the dispersion curves of the two- 
beam 220 reflection. Modification of the dispersion 
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Fig. 3. Three -beam Ge (000,220,202)  'OUT' G I X D  for  A = 
1"732235/~,, 63 = 0 ° and ¢3 = 22 mrad:  calculated (a )  intensities; 
(b) dispersion surface (the abscissa represents  the crystal sur- 
face); (c) m o d e  excitations;  (d )  penetra t ion depths.  



572 PHASE EFFECTS IN THREE-BEAM G R A Z I N G - I N C I D E N C E  X-RAY DIFFRACTION 

curves at 0 3  takes place according to the phase effect 
mentioned in (20). Since X22o = X2o2 =-Xo2~, the dis- 
persion equation (14) becomes 

(W+X22o)(W+X22o)(W-2X22o)=O (30) 

where 

u2= ~p2+ 0 o -  W. (31) 

Thus u(l)=u(2)=(e2+Xo+X22o) 1/2, u(3)= 
(~2+ Xo-2X22o) ~/2 and u(1) > u(3)~ Mode 1 and mode 
2 are therefore degenerate at 03. The dispersion curve 
of mode 3 is lower than those of modes 1 and 2. This 
is the characteristic of the dispersion curves for ~3 = 0° 
(cos ~3 > 0). 

The excitations, Ex (2) and Ex (3), of modes 2 and 
3 resemble those for two-beam (220) GIXD (e.g. 
Hung & Chang, 1989) for 0 < 03. The excitation of 
mode 1 is almost zero for 0 < 03. Near 03, Ex (1) 
gradually increases, and reaches the two-beam value 
of Ex (3) for 0>> 03. For 0 ~  0 3 ,  Ex (3) decreases 
and a kink occurs near 03. Ex (3) reaches zero for 
0 >> 03. The excitation of mode 2 remains unaffected 
for all 0. This means that mode 2 maintains its two- 
beam characteristics. 

The penetration depths t of modes 1, 2 and 3 are 
shown in Fig. 3(d). t~ is actually the penetration depth 
of the 220 reflected beam. Since Ex (1) has appreci- 

1.0 
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1.5-  
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c) 
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J 
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Fig. 4. Three-beam Ge (000,220,202) 'OUT' GIXD for h = 
1-732235/~, 83=180 ° and ~3=22mrad: calculated (a) 
intensities; (b) dispersion surface; and (c) mode excitations. 

able values only for O ~> 03, t~ contributes very little 
to the resultant penetration depth ? for 0 < 03. t2 has 
zero value for 0 < 01 (= 7.4 mrad, the critical angle 
of mode 2) because mode 2 is not excited in this 
angular range. Maximal penetration depth for mode 
2 takes place near 03 owing to the three-beam interac- 
tion. Mode 3 has very small penetration depth 
(<500 ~) .  The maximum for t 3 also occurs near 03. 
The resultant penetration depth ~, according to (29b), 
has zero value for 0 < 01 and increases gradually as 
0 increases. A kink ( - 3 4  000 A) in ? is seen at 03. 

If a smaller 03 (i.e. a longer wavelength) is chosen, 
P~o2 has less appreciable intensity at 03. Similarly, 
the intersection of the dispersion surface due to the 
three-beam interaction occurs at 03. The general 
behaviour of P~oo, P~2o, P~o2, the dispersion surface, 
the excitation and the penetration depth, have been 
reported previously (Hung & Chang, 1989). 

To reveal the phase effects on the calculation, the 
sign of the structure factor F2o2 is altered so that 
t~ 3 = 180 °. Figs. 4(a)-(c)  are the calculated results for 
the three-beam (OUT) case with 03 = 2 mrad and (~3 = 

180 °. The surface-reflected intensities P~oo, P~20 and 
P~02 resemble those for t~ 3 = 0 °, except that P~o2 has 
a small kink near 01 (= 7.4 mrad) for this case while 
the kink appeared near 02 (= 16 mrad, the critical 
angle of mode 3) for 33 = 0 °. In addition, if we blow 
up P~oo and P~2o near 03 (= 25.6 mrad), striking 
differences in the intensities appear between t~ 3 = 0 
and 33 = 180 ° (Fig. 5). For 33 = 0 °, P~oo and P~2o seem 
to appear 'in phase', while they are 'out of phase' for 
33 = 180 °. 

The dispersion surface for 33 = 180 ° is shown in 
Fig. 4(b). According to (14), the dispersion relation 
can be written as 

(W-XE=o)=(W+2X22o)=O. (32) 

0.03- 

0.02- ~ po~oo (a) 
> ,  

~-, 0.01- 

s (b) 

io is 30 
-Or ( mrad. ) 

Fig. 5. Detailed intensity distributions of Figs. 3(a) and 4(a) near 
the intensity tails for (a) 33=0 ° and (b) 33=]80 °, respec- 
tively, 
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Since u 2 = e 2 + X o - W  , u(1)=(e~+Xo+2X22o) 1/2, 
u(2)=u(3)=(~2+Xo-X22o) 1/2 and u ( 1 ) > u ( 2 )  at 

= ~b3 and ~# = e3. Now the degeneracy takes place 
for mode 2 and mode 3. The relative posit ion of  the 
dispersion curve of  mode 2 is different from that 
shown in Fig. 3(b) for ~3 =0°.  Mode 2 is located 
closer to mode  3 for ~3 = 180° while mode 2 is closer 
to mode 1 for 83 = 0 °. Natural ly ,  this difference causes 
differences in excitation. At ~3, the excitations are 
E x ( 3 ) > E x ( 2 ) > E x ( 1 )  for t~3=180 °. For ~3=0  °, 
Ex (2) > Ex (3) > Ex (1). In the present case, mode 2 
maintains its two-beam value, 50%, near ~3 and has 
a kink at ~a. Ex (1) is similar to the excitation of  
mode 1 shown in Fig. 3(c). Since the penetrat ion 
depths resemble those for 63 = 0 °, they are not shown 
here. 

(ii) Ge (000)(222)(113) / (11i )  OUT 
This case involves a very weak symmetric  222 reflec- 

tion. The triplet  phase is ~3 = 180 °. Figs. 6 and 7 are 

0.03 

0.02 
.. i-, 

,~ 0.01 

0 

2O 
" u I  
c J  
t... 

E 
"-" 10 
~g 
c r  

0 
2.O- 

c .£ 
"6 1.0 

X 

kl_l 

0 
,~ 20 

o 
o 
o 

4-. ,  

c 10 
o . _  

.4.-, p 

c -  

a_ 0 

(a) 

(d) 

/ j 3  
, , 

t2 

0 20 40 60 8'0 
lp" ( mrad. ) 

Fig. 6. Three-beam Ge (000,222,113) 'OUT' GIXD for A= 
1.608305/~, 83 = 180 ° and O3=57"4mrad: calculated (a) 
intensities; (b) dispersion surface; (c) mode excitations; and 
(d) penetration depths. 

the calculations for ~b3 = 57.4 mrad (A = 1-608249 A) 
and ~b3 = 32 mrad (A = 1.608305 A),  respectively. 

In Fig. 6(a) ,  P~22 has two peaks: one at the critical 
angle of  mode  2, 01( = 32 mrad) ,  and the other  at ~#a 
(=  64 mrad).  The peak intensities are as low as 0.004 
owing to the weak 222 reflection. P~13 has a kink near  
01 and has appreciable  intensity at Oa. It should be 
noted that the peak intensity of  P~13 near 01 is slightly 
higher than P~22 near ~0a. The sharp edge for P~13 is 
due to the cut off of  the 113 reflected beam at ~Oa. 
The P~oo intensity (which is over the scale) is too high 
to be shown here. P~oo has the same behaviour  as in 
Figs. 3 and 4. 

The phase effect on the dispersion surface is 
difficult to see in Fig. 6(b) at ~3 = 0.057 mrad because 
of  the weak three-beam interaction (F222 = 0). There 
is no degeneracy in this case, i.e. no intersection 
among the dispersion curves at ~3, since the 
reciprocal-latt ice vectors involved do not form a right 
triangle. The spacing between the dispersion curves 
of  modes 2 and 3 is very small at ~3. This is mainly 
due to the smallness in the structure factor F222. 

The excitations of  modes,  shown in Fig. 6(c), 
resemble those shown in Fig. 4(c). The penetra t ion 
depths t2 and [ have maximal  values, about  1800 and 
5500 A, respectively at ~b3 (Fig. 6d).  This is due mainly 
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Fig. 7. Three-beam Oe (000,222,113) 'OUT' GIXD for A= 
1"608290~, 63=180 ° and ~3=32mrad: calculated (a) 
intensities; (b) dispersion surface; (c) mode excitations. 
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to the weak 222 reflection, because the smaller the 
structure factor, the shorter the penetration for sur- 
face diffraction. 

If we choose 03 equal to 32 mrad (A = 1.608290 A), 
the surface-reflected intensities P~22 and P~3 (see Fig. 
7a) increase one order of magnitude higher than those 
shown in Fig. 6. The intensity P~13 is still greater than 
P ~ 2 2  at 0 3 "  

The dip of the dispersion curve of mode 1 is located 
at 03, while the dispersion curve of mode 3 is almost 
invisible in Fig. 7(b). 

The excitation Ex (2) of mode 2 has a two-beam 
character as 0 varies, while Ex (3) and Ex (1) behave 
like those for the case with 03 = 57 mrad (Fig. 7c). 
The penetration depths of this case, resembling those 
shown in Fig. 6(d),  are not shown in Fig. 7. 

When the sign of F 2 2 2  is changed from positive to 
negative, the corresponding 63 becomes 0 °. Fig. 8 
shows the calculated results for this artificial three- 
beam GIXD, with 03= 57.4 mrad. The dispersion 
surface, shown in Fig. 8(b), and the excitation of 
modes, shown in Fig. 8(c), are the same as those 
shown in Fig. 6 for 63 = 180 °, because the weak three- 
beam interaction is not able to bring out the slight 

modification due to the phase on the dispersion sur- 
face. It is therefore not surprising to have the same 
dispersion and excitation for both 63 = 0 and 63 = 
180 ° . However, as the phase angle changes from 180 
to 0 °, the intensities, which are also closely related 
to absorption, do exhibit different features. For 
example, in Fig. 8(a), the peak intensity of P~22 is 
higher than that of P~13 at 01 (=32 mrad). This is 
opposite to that shown in Fig. 6(a) for P~22 and P~]3 
near the same angular position. Similarly, if 03 is set 
at 32 mrad ()t = 1.608305/~), the fact that P~22 > P~13 
at 03 is also seen in Fig. 9(a).  The dispersion surface 
and excitation of modes (Figs. 9b and c) are the same 
as those shown in Figs. 7(b) and (c). 

(iii) Ge (000)(220)(111)/(111) IN 
The three-beam case is an 'IN' GIXD, with the 0 

rotation around the reciprocal-lattice vector of the 
220 reflection. This 'IN' means that the reciprocal- 
lattice point of the 111 reflection is initially outside 
the Ewald sphere and is now brought onto the surface 
of the Ewald sphere via the 0 scan (See Fig. l b). 

The surface-reflected intensities P~oo, P~2o and P~I  
for 63=0 ° and 0 3 = 3 6 m r a d  (A = 1.885798/~,) are 
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Fig. 8. Three-beam Oe (000,222,113) 'OUT' GIXD for A= 
1.608305/~, 63=0 ° and ~3=57"4mrad: calculated (a) 
intensities; (b) dispersion surface; (c) mode excitations. 
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Fig. 9. Three-beam Oe (000,222,113) 'OUT' GIXD for ;t= 
1.608290 ik, 63 = 0 ° and @3 = 32 mrad: calculated (a) intensities; 
(b) dispersion surface; (c) mode excitations. 
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shown in Fig. 10(a). For ~b < ~3, P~oo and P~2o have 
similar behaviour as in two-beam GIXD. Near ~3 
(almost at the critical angle of mode 3, 02 ~ 32 mrad), 
the P ~  has a kink. The sense of asymmetry of this 
intensity profile near ~b3 is somewhat opposite to 
that shown in Fig. 3(a) for the three-beam 
(000)(220)(202)/(022) IN with 83 = 0 °. It is also true 
for the profiles of P~oo and P~2o near @3- Figs. 1 l (a)  
and (b) are the detailed intensity distributions of P~oo 
and P~2o near ~3 for 83 = 0 and 180 °, respectively. The 
asymmetry of the intensity profiles is reversed as 83 
varies from 0 to 180 ° (see also Fig. 5 for comparison). 

Fig. 10(b) is the dispersion surface for the 
aforementioned IN three-beam case. The dispersion 
curves of modes 1 and 3 which have their two-beam 
characteristics are modified by the presence of the 
curve of mode 2, which is attributed to the 111 reflec- 
tion. The phase effect on the relative location of the 
dispersion curves at @3 is also seen as predicted by 

1.0 

V 00 (a) 

~ ~o.5. ~ 
0 

2O 

u.  

r-.-i 

Pr-  

O ~ : . (c) 

c-- 

°1 
~ 1.0 

~-~ 0 , 

CD 
C ~  

"~ 50 g 

U ~ , , , 

0 10 20 30 40 
"t/,r ( mrad. ) 

Fig. 10. Three-beam Ge (000,220,11) qN' GIXD for A= 
1.885798 ~, 83 = 0 ° and ~3 = 36 mrad: calculated (a) intensities; 
(b) dispersion surface; (c) mode excitations; (d) penetration 
depths. 

(14). The excitation of mode 1, Ex (1), exhibits its 
two-beam excitation for ~ < ~3. Near ~3, Ex (1) has 
a kink at 02 and then approaches 50% for ~p>> ~3. 
Ex (3) also shows its two-beam excitation for ~ < ~3 
and decreases as ~ increases. Ex (2) is almost zero 
for ~ < ~3 and approaches 50% for ~ > ~P3. 

The penetration depths, shown in Fig. 10(d), are 
very similar to those in Fig. 3(d), except that t2 shows 
a broad peak feature on the higher-angle side. This 
results from the distortion of the dispersion towards 
the high angles in ~. 

6. Discussion and concluding remarks 

The three-beam GIXD's  discussed above are of the 
Laue type, because the diffracting planes involved 
are perpendicular to the crystal surface. For strong 
three-beam interaction, in which strong reflections 
are involved, it is anticipated that the relative posi- 
tions of the dispersion curves will be affected by the 
triplet phase, as has been reported for three-beam 
Borrmann diffractions (Post, 1977). For a weak three- 
beam interaction, such an arrangement of dispersion 
curves is less affected by the phase because the very 
weak reflection is chosen for the ~ rotation. In both 
strong and weak three-beam GIXD's,  the surface- 
reflected intensities, as demonstrated in Figs. 5 and 
11, indeed convey the phase information: For strong 
interactions, the synchronization of P~ and P~h, i.e. 
'in phase', n e a r  i//3 indicates that 83 is 0°; while for 
8 3 = 180 °, P~ and P~ are 'out of phase'. For weak 
interactions, these kinds of in phase and out of phase 
of P~ and P~, are too weak to be detected. The phase 
information is, however, inherent in the relative 

$ o intensity of P~, with respect to Pg. That is, for 83 = 0 ,  
P~, > P~ at the critical angle 01, while P~, < Pg for 
83 = 180 ° at the same position. 
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Fig. 11. Detailed intensity distributions of Fig. 10(a) near ~3 = 
36 mrad for (a) 83 = 0 ° and (b) 83 = 180 °. 
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The geometry related to the IN and OUT situations 
for multiple GIXD is also important to understand 
the phase effect on the surface-reflected intensities. 
As shown in Figs. 5 and 11, the sense of asymmetry 
of P~ and P~, for the IN situation is the reverse of 
that for the OUT situation. This is similar to the 
geometric effect on the intensity of a three-beam 
diffraction from a crystal bulk (Chang, 1982). 

It is also worth noting that for the strong 
primary reflection like the 220 in the case 
(000)(220)(202)/(02ff.), the P~2o near $3 is much 
weaker than the P~2o for $ < $3, while for the weak 
primary reflection 222, the P~22 at $3 and especially 
at 01 has much higher intensity than the usual two- 
beam (222) GIXD intensity. As $3 is closer to 01, the 
peak intensity P~22 increases in order of magnitude. 
These two situations resemble the Aufhellung and 
Umweganregung, respectively, in ordinary multiple 
diffractions from bulk crystals (Renninger, 1937). 

As has been demonstrated, both surface Aufhellung 
and Umweganregung seem to be useful in centric 
phase determination from the detection of the sur- 
face-reflected intensity variation. 
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Abstract 

Expressions are obtained for the intensity distribu- 
tions which are observed when Bragg reflections are 
studied using an X-ray multi-crystal diffractometer. 
The expressions are obtained for both Bragg and Laue 
geometry at the sample, and assuming that the mono- 
chromator, sample and analyser elements are all per- 

0108-7673 / 90/070576-09503.00 

fect crystals. Detailed calculations are made of several 
configurations with both laboratory-based and syn- 
chrotron sources, and the results are compared with 
experimental measurements. The comparison shows 
that the theory gives reliable results not only for the 
half-widths of the distributions, but also for the tails 
of the distributions resulting from the dynamical 
effects in one or more of the crystals. 
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